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We explore in the framework of Quantum Computation the notion ofComputability,
which holds a central position in Mathematics and Theoretical Computer Science. A
quantum algorithm for Hilbert’s tenth problem, which is equivalent to the Turing halt-
ing problem and is known to be mathematically noncomputable, is proposed where
quantum continuous variables and quantum adiabatic evolution are employed. If this
algorithm could be physically implemented, as much as it is valid in principle—that is, if
certain Hamiltonian and its ground state can be physically constructed according to the
proposal—quantum computability would surpass classical computability as delimited
by the Church–Turing thesis. It is thus argued that computability, and with it the limits
of Mathematics, ought to be determined not solely by Mathematics itself but also by
Physical Principles.

KEY WORDS: quantum algorithms; computability; quantum adiabatic computation;
hypercomputation.

1. INTRODUCTION

Computation based on the principles of Quantum Mechanics (See, for exam-
ple, Nielsen and Chuang, 2000) has been shown to offer better performances over
classical computation, ranging from the square-root improvement in an unstruc-
tured search (Grover, 1997) to the exponential gain in the factorization of integers
(Shor, 1997). However superior in reducing the complexity of hard computation,
these quantum algorithms and all the others discovered so far are only appli-
cable to theclassically computablefunctions. That leaves untouched the class
of classically noncomputablefunctions, such as the halting problem for Turing
machines (Rogers, 1987). It is in fact widely believed that quantum computation
cannot offer anything new about computability (Bernstein and Vazirani, 1997).
Contrary to this, we propose that quantum computation may be able to compute
the noncomputables, provided certain Hamiltonian and its ground state can be
physically constructed. We propose a quantum algorithm for the classically non-
computable Hilbert’s tenth problem (Matiyasevich, 1993) which ultimately links
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to the halting problem for Turing machines in the computation of partial recursive
functions.

The practical details of implementation of the quantum algorithm for this class
of problems are not considered in this conceptual study, and will be investigated
elsewhere.

2. HILBERT’S TENTH PROBLEM

At the turn of the last century, David Hilbert listed 23 important problems,
among which the problem number 10 could be rephrased as

Given any polynomial equation with any number of unknowns and with integer coeffi-
cients: To devise a universal process according to which it can be determined by a finite
number of operations whether the equation has integer solutions.

This decision problem for such polynomial equations, which are also known
as Diophantine equations, has eventually been shown in 1970 by Matiyasevich to
be undecidable (Davis, 1982; Matiyasevich, 1993) in the Turing sense. It is con-
sequently noncomputable/undecidable in the most general sense if one accepts, as
almost everyone does, the Church–Turing thesis of computability. Since exponen-
tial Diophantine, with the unknowns in the exponents as in the example of Fermat’s
last theorem, can be shown to be Diophantine with supplementary equations, the
study of Diophantine equations essentially covers the class of partial recursive
functions, which is at the foundations of classical algorithms. The undecidability
result is thus singularly important: Hilbert’s tenth problem could be solved if and
only if the Turing halting problem could be.

3. TURING HALTING PROBLEM

The halting problem for Turing machines is also a manifestation of undecid-
ability: a Turing Computation is equivalent to the computation of a partial recursive
function, which is defined only for a subset of the integers; as this domain is classi-
cally undecidable, one cannot always tell in advance whether the Turing machine
will halt (that is, whether the input is in the domain of the partial recursive function)
or not (when the input is not in the domain).

A version of the proof of the unsolvability of the halting problem based on
the Cantor diagonal argument goes as follows. The proof is by contradiction with
the assumption of the existence of a computable halting functionh(p, i ) which has
two integer arguments -p is the Gödel encoded integer number for the algorithm
andi is its (encoded) integer input:

h(p, i ) =
{

0 if p halts on inputi
1 if p does not

(1)
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One can then construct a programr (n) having one integer argumentn in such a
way that it calls the functionh(h, n) and{

r (n) halts if h(n, n) = 1
r (n) loops infinitely (i.e., never stops) otherwise.

(2)

The application of the halting functionh on the programr and inputn results in

h(r, n) =
{

0 if h(n, n) = 1
1 if h(n, n) = 0

(3)

A contradiction is clearly manifest once we putn = r in the last equation above.
The construction of such programr is transparently possible, unless the ex-

istence of a computableh is wrongly assumed. Thus the contradiction discounts
the assumption that there is a classically algorithmic way to determine whether
any arbitrarily given program with arbitrary input will halt or not.

This contradiction argument might be side stepped if we distinguish and
separate the two classes of quantum and classical algorithms. Aquantumfunction
qh(p, i ), similar to Eq. (1), can conceivably exist to determine whether any classical
programp will halt on any classical inputi or not. The contradiction in Eq. (2)
would be avoided if the quantum haltingqhcannot take as argument the modified
programr , which is now ofquantumcharacter because it now has quantumqhas
a subroutine. This will be the case ifqh can only accept integer while quantum
algorithms, with proper definitions, cannot in general be themselves encoded as
integers. It is clear even in the case of a single qubit that the stateα|0〉 + β|1〉 cannot
be encoded as integers for allα andβ - simply because of different cardinalities.
In fact, the no-cloning theorem (Wooters and Zurek, 1982) of quantum mechanics
does restrict the type of operations available to quantum algorithms.

In essence, the way we will break the self-referential reasoning here by the
differentiation between quantum and classical algorithms in similar to the way
John von Neumann and Bertrand Russell resolved the set theory paradox (to do
with “The set of all sets which are not members of themselves”) by the introduction
of classes as distinct from sets. (For other lines of arguments, see Ord and Kieu
(2003)).

4. AN OBSERVATION

It suffices to consider non-negative solutions, if any, of a Diophantine equa-
tion. Let us consider the example

(x + 1)2+ (y+ 1)3− (z+ 1)3+ cxyz= 0, c ∈ Z, (4)

with unknownsx, y, andz. To find out whether this equation has any non-negative
integer solution by quantum algorithms, it requires the realization of a Fock space
built out of the “vacuum”|0a〉 by repeating applications of the creation operators
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a†x , a†y, anda†z , similarly to that of the 3D simple harmonic oscillators.

[aj , a†j ] = 1 for j = x, y, z, (5)

[ak, aj ] = [ak, a†j ] = 0 for j 6= k.

Upon this Hilbert space, we construct the Hamiltonian corresponding to (3)

HP = ((a†xax + a)3+ (a†yay + 1)3− (a†zaz+ 1)3+ c(a†xax)(a†yay)(a†zaz))
2,

which has a spectrum bounded from below—semidefinite, in fact.
Note that the operatorsNj = a†j aj have only non-negative integer eigenvalues

nj , and that [Nj , HP] = 0= [Ni , Nj ] sot these observables are compatible—they
are simultaneously measurable. The ground state|g〉 of the Hamiltonian so con-
structed has the properties

Nj |g〉 = nj |g〉,
HP|g〉 = ((nx + 1)3+ (ny + 1)3− (nz+ 1)3+ cnxnynz)

2|g〉 ≡ Eg|g〉,
for some (nx, ny, nz).

Thus a projective measurement of the energyEg of the ground state|g〉 will
yield the answer for the decision problem: The Diophantine equation has at least
one integer solution if and only ifEg = 0, and has not otherwise. (Ifc = 0 in our
example, we known thatEg > 0 from Fermat’s last theorem.)

If there is one unique solution then the projective measurements of the ob-
servables corresponding to the operatorsNj will reveal the values of various
unknowns. If there are many solutions, finitely or infinitely as in the case of
x2+ y2− z2 = 0, the ground state|g〉 will be a linear superposition of states
of the form|nx〉 ⊗ |ny〉 ⊗ |nz〉, where (nx, ny, nz) are the solutions. In such situ-
ation, the measurement may not yield all the solutions. However, finding all the
solutions is not the aim of a decision procedure for this kind of problem.

Notwithstanding this, measurements ofNj of the ground state would always
yield some values (nx, ny, nz) and a straightforward substitution would confirm
if the equation has a solution or not. Thus the measurement on the ground state
either of the energy, provided the zero point can be calibrated, or of the number
operators will be sufficient to give the result for the decision problem.

The quantum algorithm with the ground-state oracle is thus clear:

1. Given a Diophantine equation withK unknownsx’s

D(x1, . . . , xK ) = 0, (6)

we need to simulate on some appropriate Fock space the quantum
Hamiltonian

HP = (D(a†1a1, . . . , a†K aK ))2. (7)
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2. If the ground state could be obtained with high probability, measurements
of appropriate observables would provide the answer for our decision
problem.

The key ingredients are the availability of a countably infinite number of Fock
states, the ability to construct/simulate a suitable Hamiltonian, and to obtain/
identify its ground state via quantum measurements. As a counterpart of the semi-
infinite tape of a Turing machine, the Fock space is employed here instead of the
qubits of the more well-known model of quantum computation. Its advantage over
the infinitely many qubits which would otherwise be required is obvious.

5. SOME PRELIMINARY COMMENTS

We do not look for the zeroes of the polynomial,D(x1, . . . , xK ), which may
not exist, but instead search for the absolute minimum of its square which exists,

0≤ min(D(x1, . . . , xK ))2 ≤ (D(0, . . . , 0))2,

and is finite because limx→∞(D(x1, . . . , xK ))2 diverges.
While it is equally hard to find either the zeroes or the absolute minimum

in classical computation, we have converted the problem to the realization of the
ground state of a quantum Hamiltonian, and there is no known quantum principle
against such act. In fact, there is no known physical principles against it. Let
us consider the three laws of thermodynamics concerning energy conservation,
entropy of closed systems, and the unattainability of absolute zero temperature.
The energy involved in our algorithm is finite, being the ground state energy of
some Hamiltonian. The entropy increase which ultimately connects to decoherence
effects in a technical problem for all quantum computation in general, and we will
discuss this further below. As we will never obtain the absolute zero temperature,
we only need to satisfy ourselves that the required ground state can be achieved
with a more-than-even chance. Then there is a probability boosting technique, see
later, to bring that chance to as closed to unity as one pleases.

It may appear that even the quantum process can only explore a finite do-
main in a finite time and is thus no better than a classical machine in terms of
computability. But there is a crucial difference.

In a classical search even if the global minimum is come across, it can-
not generally be proved that it is the global minimum (unless it is a zero of the
Diophantine equation). Armed only with mathematical logic, we would still have
to compare it with all other numbers from the infinite domain yet to come, but we
obviously can never complete this comparison in finite time—thus, mathematical
noncomputability.

In the quantum case, the global minimum is encoded in the ground state.
Then, by energy tagging, the global minimum can be found in finite time and
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confirmed, if it is the ground state that is obtained at the end of the computation.
And the ground state may be identified and/or verified by physical principles.
These principles are over and above the mathematics which govern the logic of a
classical machine and help differentiating the quantum from the classical. Quan-
tum mechanics could “explore” an infinite domain, but only in the sense that it
can select, among an infinite number of states, one singe state (or a subspace in
case of degeneracy) to be identified as the ground state of some given Hamiltonian
(which is bounded from below). This “sorting” can be done because of ener-
getic reason, which is a physical principle and is not available to mathematical
computability.

On the other hand, our proposal is apparently in contrast to the claim in
(Bernstein and Vazirani, 1997) that quantum Turing machines compute exactly
the same class of functions as do Turing machines, albeit perhaps more efficiently.
We could only offer here some speculations about this apparent discrepancy. The
quantum Turing machine approach is a direct generalization of that of the classical
Turing machines but with qubits and some universal set of one-qubit and two-qubit
unitary gates to build up, step by step, dimensionally larger, but still dimensionally
finite unitary operations. This universal set is chosen on its ability to evaluate any
desirable classical logic function. Our approach, on the other hand, is from the
start based on infinite-dimension Hamiltonians acting on some Fock space and
also based on the special properties and unique status of their ground states. The
unitary operations are then followed as the Schr¨odinger time evolutions. Even at
the Hamiltonian level higher orders of the operatorsa anda†, i.e. not just two-body
but many-body interactions in a sense, are already present. The proliferation, which
is even more pronounced at the level of the time-evolution operators, together with
the infinite dimensionality and the unique energetic status of the vacuum could be
the reasons behind the ability to compute, in a finite number of steps, what the
dimensionally finite unitary operators of the standard quantum Turing computation
cannot do in a finite number of steps. Note that it was the general Hamiltonian
computation that was discussed by Benioff (1980) and Feynman (1982) in the
conception days of quantum computation.

Indeed, Nielsen (1997) has also found no logical contradiction in apply-
ing that most general quantum mechanical principles to the computation of the
classical noncomputable, unless certain Hermitean operators cannot somehow be
realized as observables or certain unitary processes cannot somehow be admit-
ted as quantum dynamics. And up to now we do not have any evidence nor any
principles that prohibit these kinds of observables and dynamics. (Ozawa, 1998
has produced some counter arguments but we think they are not quite applicable
here.) See Ord and Kieu (2003).

Our general algorithm above could be realized by, but in no way restricted
to, the following methods to simulate the required Hamiltonian and to obtain the
ground state adiabatically.
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6. SIMULATING THE HAMILTONIANS

One way to construct any suitable Hamiltonian so desired is through the
technique of Lloyd and Braunstein (1999). We consider the Hermitean operators,
where j is the index of the unknowns of the Diophantine equation,

X j = 1√
2

(aj + a†j ),

Pj = i√
2

(aj − a†j ), (8)

[ Pj , Xk] = i δ jk .

Together with the availability of the fundamental Hamiltonians

X j , Pj ,
(
X2

j + P2
j

)
, ±(Xk Pj + Pj Xk), and

(
X2

j + P2
j

)2
(9)

one could construct the unitary time evolutions corresponding to Hamiltonians of
arbitrary Hermitean polynomials in{X j , Pj }, and hence in{a†j aj }, to an arbitrary
degree of accuracy. These fundamental Hamiltonians correspond to translations,
phase shifts, squeezers, beam splitters, and Kerr nonlinearity.

With the polynomial Hamiltonian constructed, we need to obtain its ground
state. Any approach that allow us to access the ground state will suffice. One way
is perhaps to use that of quantum annealing or cooling (Kadowaki and Nishimori,
1998). Another way is to employ the quantum computation method of adiabatic
evolution (Farhiet al., 2000).

7. ADIABATIC QUANTUM EVOLUTION

In the adiabatic approach, one starts with a HamiltonianHI whose ground
state|gI 〉 is readily achievable. Then one forms the slowly varying Hamiltonian
H(s), s= t

T , which interpolates betweenHI andHP in the time intervalt ∈ [0, T ]

H(s) = (1− s)HI + sHP. (10)

Note that we can replace this linear interpolation by some nonlinear one provided
the conditions of the adiabatic theorem are observed. According to this theorem,
the initial ground state will evolve into our desirable ground state|g〉 up to a phase:

lim
T→∞

T exp
{−iT

∫ 1

0
H(τ ) dτ

}|gI 〉 = eiφ|g〉. (11)

For the Hamiltonian (9), an estimate of the timeT after which the system remains
with high probability in the ground state is

T À ‖HI − HP‖
g2

, (12)
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with

‖HI − HP‖ ≡ max
0≤t≤T

|〈e(t)|(HI − HP)|g(t)〉|, (13)

and

g ≡ min
0≤t≤T

(Ee(t)− Eg(t)), (14)

where|g(t)〉 and|e(t)〉 are respectively the instantaneous ground state and the first
excited state of (9) with instantaneous eigenvaluesEg(t), Ee(t).

The time-ordering operator on the left hand side of (10) can be approximated
as

exp{−iTH(τN)1τ } · · ·exp{−iTH(τ1)1τ }
for (Farhiet al., 2000)

N1τ = 1,

1τ‖HI − HP‖ ¿ 1. (15)

Note that we have employed here the “norm”‖ · ‖ as defined in (12) for the var-
ious Hamiltonians which are unbounded from above. This norm is the relevant
measure for the problem only concerned with the lowest states of the interpolating
Hamiltonian (9). In each interval1τ , the unitary operators exp{−iH(τk)T1τ },
for k = 1, . . . , N, can be expressed through the subdivision ofT1τ into m subin-
tervals of sufficiently small sizeδs satisfyingmδs= T1τ ,

exp{−iH(τk)T1τ } = (exp{−iH(τk)δs})m.

Each of them factors on the right hand side of the last expression can be now
simulated through the approach of (Lloyd and Braunstein, 1999), where it was
shown that the number of stepsM grows as a small polynomial in the order of the
polynomial in the HamiltonianH(τk) to be simulated, the accuracy to be enacted,
and the time intervalT1τ over which it is to be applied.

In this way, the requirements of the adiabatic conditions on the one hand and
of, on the other hand, the simulations of the Hamiltonians in the time intervalT1τ
can be satisfied.

8. AN ADIABATIC ALGORITHM

To solve the Hilbert’s tenth problem we need on the one hand such time-
dependent physical (adiabatic) processes. On the other hand, the theory of Quantum
Mechanics can be used to identify the ground state through the usual statistical pre-
dictions from the Schr¨odinger equation with a finitely truncated number of energy
states of the time-dependent HamiltonianH(t/T). This way, we can overcome the



P1: IZO

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470299 September 26, 2003 16:30 Style file version May 30th, 2002

Quantum Algorithm for Hilbert’s Tenth Problem 1469

problem of which states are to be included in the truncated basis for a numerical
study of Quantum Mechanics. This also reconciles with the Cantor diagonal argu-
ments which state that the problem could not be solved entirely in the framework
of classical computation.

Later is an algorithm (Kieu, 2001a,b,c) based on this philosophy of exploit-
ing the interplay between the presumably infinite physical world and the theory of
Quantum Mechanics calculated in a finite manner on Turing machines. The algo-
rithm presented may not be the most efficient; there could be many other variations
making better use of the same philosophy.

It is in general easier to implement some Hamiltonian than to obtain its
ground state. We thus should start the computation in yet a different and readily
obtainable initial ground state,|gI 〉, of some initial Hamiltonian,HI , then deform
this Hamiltonian in a timeT into the Hamiltonian whose ground state is the
desired one, through a time-dependent process represented by the interpolating
HamiltonianH(t/T).

In this approach, inspired by the quantum adiabatic approach, one starts, for
example, with a HamiltonianHI ,

HI =
K∑

i=1

(a†i − α∗i )(ai − αi ), (16)

which admits the readily achievable coherent state|gI 〉 = |α1 . . . αK 〉as the ground
state. Then, one forms the time-dependent HamiltonianH(t/T) in (9), which
interpolates in the time intervalt ∈ [0, T ] between the initialHI andHP.

• Step 0: Choose an evolution timeT, a probabilityp which can be made
arbitrarily closed to unity, and an accuracy 0< ε < 1 which can be made
arbitrarily small.
• Step 1 (on the physical apparatus): Perform thephysicalquantum time-

dependent process which is governed by the time-dependent Hamiltonian
H(t/T) and terminates after a timeT . Then, by projective measurement
(either of the observableHp or the number operators{N1, . . . , NK }) we
obtain some state of the form| . . .ni . . .〉, i = 1, . . . , K .
• Step 2 (on the physical apparatus): Repeat the physical process inStep 1a

number of times,L(ε, p), to build up a histogram of measurement frequen-
cies (for all the states obtained by measurement) until we get a probaility
distributionP(T ; ε) at the timeT with an accuracyε for all the measured
states. The convergence of this repetition process is ensured by the Weak
Law of Large Numbers in probability theory (Renyi, 1970). (An overesti-
mate of the number of repetitions isL ≥ 1/(ε2(1− p)).) Note the lowest
energy state so obtained,|Enc〉, as the candidate ground state.
• Step 3 (on the classical computer): Choose a truncated basis ofM

vectors made up of|α1 . . . αK 〉 and its excited states by successive
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applications of the displaced creation operationsb†i ≡ (a†i − α∗i ) on the
initial state.
• Step 4 (on the classical computer): Solve the Schr¨odinger equation in

this basis forψ(T), with the initial stateψ(0)= |α1 . . . αK 〉, to derive a
probability distributionPest(T ; M) (through|〈ψ(T)| . . .ni . . .〉|2) which is
similar to that ofStep 2and which depends on the total numberM of
vectors in the truncated basis.
• Step 5 (on the classical computer): If the two probability distributions are

not uniformly within the desired accuracy, that is,|Pest(T ; M)− P(T ; ε)| >
ε, we enlarge the truncated basis by increasing the sizeM and go back to
theStep 4above.
• Step 6 (on the classical computer): If the two probability distributions are

uniformly within the desired accuracy, that is,|Pest(T ; M)− P(T ; ε)| < ε,
then use this truncated basis to diagonalsHP to yield, within an accuracy
which can be determined fromε, the approximated ground state|g′〉 and
its energyEg′ .
• Step 7 (on the classical computer): We can now estimate in this truncated

basis the gap between the ground state and the first excited state. From
this gap, we can make use of the quantum adiabatic theorem and choose
a timeT such that the system has a high probability to be in the ground
state

||〈g′|ψ(T)〉|2− 1| < ε.

We then go back toStep 1with this choice ofT , which is to amplify and
thus confirm the candidate ground state as the real ground state.

Our point is on computability and not on computational complexity, which de-
pends on individual polynomials. Computability is based on the arguments that
the adiabatic timeT is finite (Kieu, 2001a,b,c; Ruskai, 2002) (for a high proba-
bility of achieving the ground state) and that the ground state can beverifiedby
employing the theory of Quantum Mechanics. As long as the energy gap is finite
so is the computational time. In contrast, the most general classical algorithm for
Hilbert’s tenth problem (by systematic substituting in integers of larger and larger
magnitudes) cannot solve it in principle even allowing for exponentially grown,
but finite, amount of time—unlessinfinite amount of time were available, which
it is not.

Given a Diophantine equation, the substitution in integers of larger and larger
magnitudes is not satisfactory as we do not known when the substitution should be
terminated. Likewise, if we want to numerically simulate the quantum algorithm
proposed, we would have to use a finitely truncated havingM vectors. But we face
the same problem of not knowing whichM to choose in general. That is why the
problem is noncomputable on classical computers.
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Even we can estimateT , as in the appendix, for some starting point of the
adiabatic computation as we might not be able in general to exactly knowT a
priori. Were the required adiabatic timeT somehow known exactly within classical
computation and without the help of quantum computation then the problem might
be solves classically. But as Hilbert’s tenth problem cannot be solved by classical
computation, we will have to resort to quantum computation withouta priori
knowing exactly the timeT , except the knowledge that it isfinite. Constructive
logicians (D. Bridges in private communication with Cristian Calude) allow for
this algorithmic situation under the so-called Markov’s Principle.

9. DISCUSSION OF THE ALGORITHM

The quantum algorithm above can be proved to terminate (even though it
could be after a very long time) and give us the decision result for Hilbert’s tenth
problem.

The real spectrum ofHp is of integer values (in suitable units), and that is
what we also get from measurement. But the spectrum calculated from a finitely
truncated basis is not of integer values and will fluctuate with fluctuation size
depending on the size of the truncated basis employed. The accuracy sizeε of the
measured probability distribution is chosen such that the off-set of the ground state
energyδ should allow us to conclude whether the ground state energyEg′ is zero
or not. (δ is in general a function ofε andT .)

Eg′ = 〈g′|HP|g′〉,
= Ec + 〈r |HP|r 〉 + 2Re〈r |HP|nc〉,
= Ec + 〈r |HP‖r 〉 + 2Ec(Re〉r |nc〉),
≡ Ec + δ(ε), (17)

where|r 〉 ≡ |g′〉 − |nc〉 andHP|nc〉 = Ec|nc〉.
The termination of our algorithm is obtained if and when the adding of higher

b-number states (those created from the coherent state by the application of the
creation operatorb†i ≡ (a†i − α∗i )) to the truncated basis does not change the ap-
proximated ground state ofHP beyond certain range of accuracy,

|δ(ε)| ≤ Ec 6= 0. (18)

Even we can prove that the approximated ground state|g′〉 and its energy will
eventually converge to its true values, the mathematical noncomputability results
from the fact that their rates of convergence are unknown. Thus, we might not be
able to use mathematical reasoning alone to determine when to stop adding more
states to the truncated basis in order to approximate the ground state correctly.
Different truncated bases would givesomeestimates for the ground state but we
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have no control over these estimates and no idea how good they are. They could be
anywhere in relation to the true values. This is nothing but mathematical noncom-
putability. (However, this quantum algorithm has inspired us to reformulate the
Hilbert’s tenth problem with continuous variables (Kieu, 2001a,b,c), and the math-
ematical computability of this reformulation, or lack of it, should be investigated
further.)

To know when the truncated basis is sufficiently large to have the estimated
ground state values within any given accuracy, that is, to regain computability, we
have to exploit the measurability of physical processes. Because of this measura-
bility we can estimate the true accuracy of our measured values. Then a comparison
of results from the Schr¨odinger equation to these measurable quantities will help
determining the accuracy of results from the equation, that is, regaining the lost
computability through the physical world, presumably infinite.

10. DECOHERENCE AND ERROR CORRECTION

Our approach above is in fact a combination of the quantum computation of
continuous variables and of adiabatic evolution. There exists some error correction
protocol for continuous variables (Braunstein, 1998) which could be of help here to
protect the wave functions from decoherence. However, the adiabatic computation
we exploit is quite robust in general (Childset al., 2001). An imperfect conventional
quantum algorithm might have different sorts of errors than an imperfect adiabatic
process, where the system is kept close to the instantaneous ground state over
time. Decoherence by the environment inducing transition between levels could
be controlled in principle at a temperature that is small compared to the gap (13),
given its estimate. Errors introduced by the Hamiltonian simulation may result in
a Hamiltonian different from (9) but in a formH(t/T)+ K (t). Recent numerical
study (Childset al., 2001) of small systems has in fact indicated that the adiabatic
computation is interestingly robust even for fairly largeK (t), providedK (t) varies
either sufficiently slowly or sufficiently rapidly (which is more likely to be the case
considered here because of the nature of our Hamiltonian simulations).

11. PROBABILITY BOOSTING

Because of the particular nature of the present scheme, the various approx-
imations result in some probability that the final measurement will not find the
system in the desired ground state; but appropriate choices of the various time
parameters could increase the success probability of the algorithm to more than
even. We spell out explicitly here the probability boosting technique, as mentioned
in (Bernstein and Vazirani, 1997), that one could subsequently apply.

In our computation, adiabatic or otherwise, the end result, starting from some
initial state|gI 〉, may be contaminated with some excited states other than the
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desirable ground state|g〉,

|gI 〉 time7−→a|g〉 + b|e〉. (19)

If |a| > |b|, that is, if there is a better-than-even chance to obtain|g〉 by measure-
ment then one can boost the success probability to arbitrarily closed to unity by
performing a concatenated computation overl Hilbert spaces

|gI 〉1⊗ · · · |gI 〉l time7−→N
l∑

p=0

apbl−p|e〉1⊗ · · · ⊗ |g〉k1 ⊗ · · · ⊗ |g〉kp ⊗ · · · ⊗ |e〉l ,

(20)

whereN is the normalizing factor. Let us consider the majority amplitudes, when
more than half of thel Hilbert spaces return the correct results,Napbl−p, p > l

2;
and the minority amplitudes,Naqbl−q, q > l

2. The ratio of the majority over the
minority, (a/b)p−q, is clearly boosted for sufficiently largel and forp ∼ O(l ) and
q ∼ O(l ). The probability distribution for a measurement of the end state in (19), as
a consequence, is exponentially dominated by the majority results. In other words,
the probability to obtain a majority result which contains the true ground state can
be made arbitrarily closed to unity, (1− ε′), provided|a| > |b| andl > −C logε′.
However, the decoherence control for suchl concatenated Hilert spaces will be
more crucial.

12. CONCLUDING REMARKS

In this paper, we consider and emphasize on the issue of computability in
principle, not that of computational complexity. This attempt of broadening of the
concept of effective computability, taken into account the quantum mechanical
principles, has been argued to be able in principle to decide the classically/Turing
undecidables, Hilbert’s tenth problem and thus the Turing halting problem in this
instance. If this is realizable, and we don’t have any evidence of fundamental nature
to the contrary, the Church–Turing thesis should be modified accordingly.

In summary, we have encoded the answer to the question about the existence
or lack of non-negative integer solutions for any Diophantine equation into that of
ground state of some relevant Hamiltonian.

The key factor in the ground state verification isthe probability distributions,
which not only can be calculated in numerical Quantum Mechanics (with a trun-
cated basis) but also are measurable in practice. After all, probability distributions
are also physical observables. However, in using the probability distributions as
the identification criteria, we have to assume that Quantum Mechanics is able to
describe Nature correctly to the precision required. Note also that we have here a
peculiar situation in which the computational complexity, that is, the computation
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time, might not be known exactlybeforecarrying out the quantum computation—
although it can be estimated approximately (see the appendix later).

On the other hand, if for any reasons the algorithm is not implementable be-
cause of physical principles and/or physical resources then it would be an example
of information being limited by physics, rather than by logical arguments alone.

Our study is an illustration of “Information is physical” (see Calude and
Pavlov, 2001) for another quantum mechanical approach and (Etesi and N´emeti,
2001) for where the theory of General Relativity is also exploited for the compu-
tation of Turing noncomputables).

That some generalization of the notion of computation could help solving the
previous undecidability/noncomputability has been recognized in mathematics
and was considered by Kleene as quoted in Rogers (1987). But this has not been
realizable until now simply because of the nonrecognition of quantum physics as
the missing ingredient. Our quantum algorithm could in fact be regarded as an
infinite search through the integers in a finite amount of time, the type of search
required by Kleene to solve the Turing halting problem.

Our decidability study here only deals with the property of being Diophantine,
which does not cover the property of being arithmetic in general, and as such has
no direct consequences on the G¨odel’s Incompleteness theorem (Kieu, 2001a,b).
However, it is conceivable that the G¨odel’s theorem may lose its restrictive power
once the concept of proof is suitably generalized with quantum principles.

APPENDIX: GAP ESTIMATION

The question of computational complexity, i.e. how large the adiabatic com-
putational timeT is for a high probability of measurement success, is dependent
on Hp, i.e. on the specific Diophantine equation in question, and on the initial
HamiltonianHI . Some estimate for the energy gap (13) is desirable, but not nec-
essary as discussed above. In this appendix we propose such an estimate for the
Step 0of the quantum algorithm.

It has been shown elsewhere (Kieu, 2001a,b,c; Ruskai, 2002) that in general
there should be no level crossing for the ground state except at the end points
t = 0, T where the adiabatic process can start or end with some obvious symmetry.
Furthermore, the freedom in choosing the initial hamiltoniansHI and their ground
states and in performing different adiabatic interpolations, not just as linear as
in (9), might be exploited to enable the gap enlargement and to speed up the
computation.

We shall employ the simple harmonic oscillators, i.e. Gaussian approxima-
tions, to obtain an estimate for the energy gap.

For the variousai , a†i appearing in the interpolating HamiltonianH(s) (9) at
the time instants, we use the Bogoliubov ansatz, with realui (s) andvi (s),
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ci = ui (s)ai + vi (s)a†i ,

ai = ui (s)bi − vi (s)c†i . (A1)

The ci -zero occupation state is denoted by|0c〉, where thes-dependence of the
state is implicit. The canonicity [ci , c†j ] = δi j demands

u2
i (s)− v2

i (s) = 1, (A2)

upon which

〈a†i aj 〉 = v2
i (s)δi j ,

〈a†i a†j 〉 = 〈ai aj 〉 = −ui (s)vi (s)δi j , (A3)

where

〈Aki Akj 〉 ≡ 〈0c|Aki Akj |0c〉, (A4)

We pay particular attention to the following terms

: a†i ai :c =
(
u2

i (s)+ v2
i (s)

)
c†i ci − ui (s)vi (s)

(
c†2i + c2

i

)
,

: ai ai :c = −2ui (s)vi (s)c†i ci + v2
i (s)c†2i + u2

i (s)c2
i . (A5)

Needed next is a version of the Wick theorem (Itzykson and Zuber, 1985) for the
ordinary product involving the operatorsA1, . . . , An,

A1 · · · An =
[n/2]∑
p=0

: A1 · · · Âk1 · · · Âk2p · · · An :c

×{〈Ak1 Ak2〉 · · · 〈Ak2p−1 Ak2p〉 + permutations}, (A6)

where the normal ordering :· · · :c is done with respect to some annihilation op-
eratorsci which annihilate some common state|0c〉 for variousi , ci |0b〉 = 0. The
Eq. (A6), in which the hatted operators are omitted from the normal ordering, is
an exact result and can be proved by induction.

We can now list the various steps of our estimation:

1. We apply the Wick theorem, with respect toci ’s, to the Hamiltonian
H(s) (9)

H(s) = Eb(s)I

+
∑

i

terms linear inci andc†i

+
∑

i

(
Gi (s)c†i ci + Ki (s)c2

i + K ∗i (s)c†2i

)
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+
∑
i 6= j

terms involvingc†i cj , ci cj , c†i c†j

+
∑
i jk ···

higher order, normal-ordered terms ofc andc†. (A7)

Note that in this process the higher order terms contribute to the co-
efficients of lower order ones through products of various expectation
values in (A3). With help from (A3) and (A5), the various coefficients
Eb(s), Gi (s), Ki (s), . . . in the right hand side above can be expressed as
polynomials in (ui (s), vi (s)).

2. We next fixui (s), and vi (s) numerically from (A2) and from the im-
position that the coefficientsKi (s) = 0 in (A7). Then we can evaluate
the coefficientsGi (s) from their polynomial expressions in (ui (s), vi (s)).
From (A7), on the other hand, we see also that

Gi (s) = 〈1ci |H(s)|1ci 〉 − 〈0c|H(s)|0c〉, (A8)

where |1ci 〉 = c†i |0c〉. Mathematically, mini |Gi (s)| thus provides some
indication of the size of the energy gaps ofH(s) around the energy
level Eb(s) = 〈0c|H(s)|0c〉. Even though|0c〉, obtained from the linear
Bogoliubov transformations (A1), in general may not be the true ground
state ofH(s), we could use mini |Gi (s)| as some indicator for the gapg in
(13) to estimateT from the adiabaticity condition (11).

Some variations of the above method might yield a better estimate. For in-
stance, one could numerically obtain (ui (s), vi (s)), and thus mini |Gi (s)|, by min-
imizing the energyEb(s) subjected to the constraints (A2) with or without the
constraintsKi (s) = 0. The aim of this minimization, if possible, is to select a
state|0c〉 whose energy expectation value at the times is as closed to that of
the ground state at that instant as allowed by the linear Bogoliubov transforma-
tions. Other variations might be involving, instead of (A1), some nonlinear rela-
tions, for the canonicity only requires thata andc are to be unitarily transformed,
c = U†(a†, a)aU(a†, a).

The accuracy of the estimation and its higher order corrections can be evalu-
ated systematically from the higher order terms in the last line of (A7). Numerical
diagonalization of (A7) with a series of truncated bases in|nci 〉 of increasing sizes
could further provide us more information about the gap thus obtained.
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NOTE ADDED IN PROOF

The author has recently obtained a criterion based on the final probability
distribution, which can be measured to arbitrary precision, for identifying the
ground state ofHP at timeT. See Kieu (2003) for more details.
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